Nonparametric time series forecasting with dynamic updating
نویسندگان
چکیده
We present a nonparametric method to forecast a seasonal univariate time series, and propose four dynamic updating methods to improve point forecast accuracy. Our methods consider a seasonal univariate time series as a functional time series. We propose first to reduce the dimensionality by applying functional principal component analysis to the historical observations, and then to use univariate time series forecasting and functional principal component regression techniques. When data in the most recent year are partially observed, we improve point forecast accuracy using dynamic updating methods. We also introduce a nonparametric approach to construct prediction intervals of updated forecasts, and compare the empirical coverage probability with an existing parametric method. Our approaches are data-driven and computationally fast, and hence they are feasible to be applied in real time high frequency dynamic updating. The methods are demonstrated using monthly sea surface temperatures from 1950 to 2008.
منابع مشابه
Nonparametric modeling and forecasting electricity demand: an empirical study
This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the d...
متن کاملForecasting Time Series of Inhomogeneous Poisson Processes with Application to Call Center Workforce Management By
We consider forecasting the latent rate profiles of a time series of inhomogeneous Poisson processes. The work is motivated by operations management of queueing systems, in particular, telephone call centers, where accurate forecasting of call arrival rates is a crucial primitive for efficient staffing of such centers. Our forecasting approach utilizes dimension reduction through a factor analy...
متن کاملOn Modeling and Forecasting Time Series of Smooth Curves
We consider modeling a time series of smooth curves and develop methods for forecasting such curves and dynamically updating the forecasts. The research problem is motivated by efficient operations management of telephone customer service centers, where forecasts of daily call arrival rate profiles are needed for service agent staffing and scheduling purposes. Our methodology has three componen...
متن کاملForecasting flow discharge through time series analysis using SARIMA model for drought conditions, a case study of Jamishan River
Nowadays, water supply is more limited and providing water is more difficult due to increasing population and demand for water. Thus, due to rainfall shortage and impacts of drought, the need for forecasting monthly and annual rainfall and flow discharge through time series analysis is acutely felt. One of the key assumption in time series is their static condition. However, hydrological time s...
متن کاملتحلیل و پیش بینی نوسانات تراز آب دریای خزر با استفاده از مدل های استوکستیک سری زمانی
Forecasting of sea level fluctuations is a suitable tool for comprehensive management of the sea and the protection of coastal areas. On the other hand, application of time series analysis for forecasting purposes has been evaluated to be very appropriate. Therefore, two time series consisting monthly measured sea level data were used in the present research. The data have been recorded at two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 81 شماره
صفحات -
تاریخ انتشار 2011